在互金领域,那些独角兽公司则专注于智能风控的应用。投资人从追逐商业模式到认同“技术含量=服务效率”。不应用人工智能,就谈不上是“金融科技”,毕竟机器算法在金融推算面前的失误率绝对低于人工。
对于人工智能在金融领域的应用,有业内人士认为,这将成为金融发展的一大机遇。未来,金融服务将会更加去中心,更加线上,更加智能,从而为整个行业带来颠覆性变革。
据了解,互联网行业三大巨头BAT均在积极布局区块链金融,百度与Circle(跨境支付)达成战略合作;阿里与以太坊合作开发金融云;腾讯旗下的微众银行基于腾讯云做联盟链云服务等。
其实,不止是BATJ在面向金融机构和客群提供开放赋能,会出现更多的参与者,7月6日,以宜贷网为前身的全新综合类金融科技服务集团众之金服成立,亦是这场游戏的新入局者,众之金服拥有智能大数据、新型智能资产、聚合支付、小微银行服务、智能投顾、网贷等六大板块垂直服务,等等不一而足。
毫无疑问,人工智能正成为改变整个互联网产品形态的技术之手,发源于比特币金融创新的区块链技术又被视为改变未来互联网价值流通的一个革命力量。
我国在金融科技领域具有明显的比较优势,无论是BAT、传统银行还是保险机构、互联网创业公司,都在积极布局金融科技,从长远来看,这将催生更多新商业模式及新物种。
理想丰满,现实骨感:金融AI化的蜀道之难
金融是一个复杂的行业,在短时间内,很难被AI完全替代。
在利润率较高、数据结构化较好、问题定义明确的一些方面,AI会大行其道。在不同金融领域的AI如果都能发展到一定程度时,或许能加速整个金融产业的AI发展。
在现阶段,金融公司所面临的数据结构化需求远远高于大数据要求。大量的历史数据还并未电子化,甚至现阶段大量金融公司新产生的数据都还属于不规范的格式。
另外,对于金融人才来说,这个时代需要专精金融且能和计算机从业者顺畅沟通的人才,同时金融学的进一步发展也需要专业人才继续探索,因此金融完全是需要继续学的,但有所侧重的补充计算机知识可以为个人和社会带来更大的价值。
这一问题,其实在互联网金融领域早已出现,互联网金融从业者既要懂金融,又要具备互联网相关经验,复合型人才永远是最稀缺的,互联网金融尚未成熟之际,现在又在剧烈向AI靠拢,势必造成人才断层。
人民日报近日发文《中国人工智能人才缺口超500万 供求比例仅为1:10》,据报到显示,基于领英平台的全球人工智能高级人才44%以上来自美国,需求总数大概在190万人左右,而中国相关技术人才数量才达到5万人左右,这与中国近500万人工智能人才的需求,相差甚远,一时间各大互联网公司抢夺人工智能相关人才的风波被推到风口浪尖!
科技金融虽好,不仅仅是弯道超车的好时机,更有甚者将此比喻为人类的下一幕,简直是换赛道,良禽折木而栖,严重失衡的供求关系下,中小型的金融公司,很难汇聚相关人才,只能加剧与大公司的差距,一场看得见却摸不到的行业窗口期。
除此之外,AI在金融上的表现也许并没有那么显著。前不久,“某国有大行信用卡将所有乐视员工信用卡额度清零”的新闻被炒得沸沸扬扬。随后,该行解释称主要是因为该行新上线了“新一代”核心系统。在风险防控系统智能化转型后,因为识别到乐视公司的风险可能会影响员工收入,进而影响信用卡还款能力后,系统便作出了此调整,AI风控上,不免陷入一刀切,可见理想中的AI风控,不仅没很好的智能,多少显得有点智障了。
不仅如此,金融行业无法很好的用AI来定义一个金融问题现阶段比较被商业化广泛应用的机器学习还是监督学习,而监督学习要求有明确的问题定义。以简单的监督学习为例,如果你想建立一个模型来预测企业并购是否会影响公司股价,那么你需要提供大量并购数据,以及并购后股价是否发生了变动。理想情况下,在收集足够多的并购消息和股价变动信息后,做自然语言分析后提取特征放到机器学习模型里面就大功告成了。然而在实际情况中:我们无法给出明确的问题定义和边界。
最后,烧钱加剧,能否熬到天亮未可知。投出产出在现阶段不成正比,短时间内难以获得收益。在这种情况下,每个问题都需要大量人和数据来支撑。因此研究探索型的、不能产生利润的方向很少有公司来投资AI来进行研究的。换言之,有财力提供AI研究的金融公司不多,小型的金融机构或者学术机构又缺乏资源(资金,技术人才,数据积累)来进行相关系统的研究。百度CEO张亚勤,在接受媒体采访时就曾经表示,AI不是短时间能赚几百亿的生意,需要很长的时间积累,对于现在的互联网金融公司来讲,能否熬到天亮也是个问题。
人工智能时代,或许还很遥远。或许人类会发明一个我们无法驾驭无法理解的新物种。就像alpha go战胜人类顶尖棋手之后,与之对弈的棋手都惊叹人工智能对于围棋的理解已经超出了人类千年以来的经验范畴。很期待在人工智能与金融学全面结合之后,会产生出一种全新的金融理论,也许到时候行为金融学所研究的,就是人工智能的行为。
科技自媒体刘志刚,转载保留作者信息,,违者必究。