虽然云知声针对这些问题在技术上做了完善,但是仍不一定能完全翻译出正确的意思,在语义理解上有时候可能仍存在歧义,甚至有时候答非所问。换句话说,自然语言理解技术目前还是处于初级阶段,也只能解决一些效率问题,还不足以对医疗问诊进行全面的解析。云天使基金副总裁张舒峣曾表示,医疗作为一个较为特殊的传统行业,对新技术相对保守,这也导致了AI医疗很难取得爆发式的进展。而且目前,智能语言服务也偏娱乐属性,在医院场景并不适用。
其实,不管是导诊机器人还是AI医疗影像、外科手术机器人,都有落地难题。因为医学算是一个比较前沿的行业,随时都有可能碰到疑难杂症,对此就会出现新的数据,那么AI医疗产品的数据算法就要不断的更新,而数据算法的技术难度也会随之增大。但目前大多数公司在多学科联合诊断算法上还存在技术瓶颈,而技术力量的欠缺就会限制AI医疗的进一步发展。
总之,医学领域维度多、门槛高,人工智能突破的难度还是比较大。
三座大山压制下,AI医疗难盈利?
在数据、人才和技术这三座大山的压制下,AI医疗的发展并非想象中乐观,其盈利还是存在问题。据《2018中国人工智能商业落地研究报告》显示,2017年,在整个产业链上,90%以上的AI企业依然处于亏损阶段,绝大多数企业年营业收入不足两亿。那么对于医疗这个重垂直化领域来说,大多数的AI医疗企业也是属于亏损阶段。
毕竟,AI医疗的盈利状况与AI医疗产品的落地情况有着很大的关系。据亿欧网了解到,人们对疾病预测的AI产品需求指数是比较大的,而这方面的落地指数却很小;在医疗影像上面的需求一般,但是其落地指数却处于比较大的值。这就意味着,需求指数不能很好地与落地指数成线性关系,换句话说,AI医疗产品并不能很好的满足人们的需求,这就容易导致人们不愿为AI医疗产品买单,因此,AI医疗的盈利就比较低,甚至可能不盈利。
况且,目前大多数AI医疗产品都在医院处于试用阶段,因此,它们在医院里仅仅充当医生常规检查过程以外的一个拾遗补漏的工具,并没有达到其早先的定位。照这么看,AI医疗产品依旧还未完全获得医生的信任,那么AI医疗产品短时间内很难在市场上被全面推广使用就不难理解了。
据了解,科大讯飞、云知声等AI企业在AI医疗业务上至今为止都未实现盈利,按理说,人工智能医疗市场的规模会因此而缩小,但目前的状况却是人工智能医疗市场规模在不断地增大。
前瞻产业研究院发布的《2018—2023年中国人工智能行业市场前瞻与投资战略规划分析报告》显示,2016年中国医疗人工智能的市场规模就已达96.61亿元,2018年有望达到200亿元,预计到2020年我国健康医疗大数据行业市场规模将突破800亿元。
这么看来,投资方非常注重AI医疗的发展,而我国在人工智能医疗方面仍是蹒跚学步的婴儿,绝大多数的产品都还没到商业化阶段。其实,要想让我国的AI医疗成长,就需要更多的产品能够实现真正的落地,并且大规模的适用于医院场景,只有这样,AI医疗产品才会慢慢走向商业化,实现盈利。而在AI医疗产品实现落地这一过程的探索中,就需要使用大量的资金。因此,AI医疗市场规模越来越大,但要完全实现AI医疗产品商业化还需要好长一段时间。
综合来看,对于掌握人工智能技术的计算机专家和技术的公司来说,AI医疗相当于给它们打了一针兴奋剂,而就AI医疗的盈利来看,表现出来的情况并不理想,毕竟真正实现落地的产品相当少。
总之,与人工智能医疗相关的公司要想在AI医疗上实现盈利,必然要攻破数据、人才和技术三大难题,才有可能使更多的AI医疗产品实现真正的落地,从而解决AI医疗难盈利的问题。但以目前的AI医疗发展状况来说,企业何时才能达到这一目标呢?
文/刘旷公众号,ID:liukuang110,本文首发旷创投网