AI不同于基本的电脑程序,回想上世纪许多电子游戏中的“愚蠢NPC”令人哭笑不得,此类游戏中的“人工智能”只是由代码和命令结合而成的“伪智能”,NPC们的更多行为只是由行为树决定的,并不具有学习能力。
但是,随着AlphaGo、OpenAI等AI开发平台的出现,其依托更加精密的算法和学习能力,大大增强了游戏的可玩性,提高了玩家的满意程度。比如,王者荣耀AI近期用户就能体验到,只要发现有人在对战中掉线,AI就会无缝对接,让AI替人去完成这局比赛。
谷歌旗下的DeepMind也宣布将与暴雪娱乐合作开发AI,用以在星际2游戏中增强玩家的游戏体验。微软此前开源了基于Minecraft的AI开发平台,允许用户可以在游戏中使用上帝模式测试AI,比如开发人员可以在《我的世界》中教AI如何爬山。而更有开发者训练AI通过视觉输出,让AI在《我的世界》中摆放积木,但是结果却不尽如人意,这也体现出了当前AI的需长足发展之处。
2.“让产品更加精致”
随着电竞成为2022 年杭州亚运会的正式比赛项目,游戏成为竞技项目的同时,游戏及比赛的公平性也成为了一个重要问题。人工智能在游戏领域的其中一种形态就是反作弊系统。人工智能机器可通过检测玩家的行为,分析出异常情况,来避免某些玩家使用作弊手段来获得胜利,保证游戏的公平性。
让产品优化无非是体现在两个方面,一方面是增强游戏角色真实感,另一方面是游戏场景设计。在增强角色真实感上,爱丁堡大学推出的PFNN技术可以通过神经网络学习迅速生成动画,其效果显著。DeepMind训练了一个名叫WaveNet的AI,用于提升机器发出声音的逼真度,增强场景感知。
其他方面,国内外各大机构更是看准了AI游戏这块“香馍馍”,纷纷进行试水。普林斯顿大学团队就通过研究自动驾驶来助力AI游戏。其将人工智能投放到游戏《GTA5》中,使得AI可以在游戏环境中不断得到训练,从而在面对不同的灯光、气候、路况等条件时,能够做出最优的反应。最终,研究人员成功开发出一项名叫DeepDrive的自动驾驶模拟器。
3.以游戏AI映照现实发展
AI应用在游戏领域,与其他的落地场景有一定的差异性。游戏作为虚拟的存在,更是现实的一种写照,因此其游戏中对象在虚拟场景中遇到的各种感知和决策类问题,同样在生活中也会遇到,游戏中对这类问题的处理和解决方案,也可以反向应用于实际生活中。
腾讯AI lab 机器学习中心负责人刘晗认为,游戏AI涉及到三个核心能力:对外界环境的感知,根据状态做出的决策,人与智能体之间的对话。游戏AI研究当中对这些研究所累积的经验、方法与结论,有三个方向的用途:首先是打通虚拟与现实世界的藩篱,从而赋能物理世界,比如无人车和机器人的发展;其次,游戏中对话智能的研究,或能成为通向强人工智能的重要路径;第三,研究游戏中人、智能体和环境的交互,能让智慧城市这样复杂而意义深远的项目受益。
比如对无人驾驶的训练,便是在虚拟环境下AI驾驶的一个应用事例。而这样的事例,将会越来越多。又如城市交通问题,AI与大数据可以帮助建立城市流通模式,并构建虚拟城市,游戏设计的同时更是裨益真实的城市交通。
总之,将AI在游戏中的应用简单的看成人机对抗是狭隘的,AI所连接的虚拟与现实,在游戏场景中大有可为。虽然,目前AI的应用情况还有很长的路要走,但是,国内国内两大游戏巨头腾讯和网易也都已经入场,AI游戏的未来或许不会太远。
智能相对论(微信id:aixdlun):深挖人工智能这口井,评出咸淡,讲出黑白,道出深浅。重点关注领域:AI+医疗、机器人、智能驾驶、AI+硬件、物联网、AI+金融、AI+安全、AR/VR、开发者以及背后的芯片、算法、人机交互等。