例如,在对车辆信息进行标注时,传统的数据标注只能保证人工智能能够准确识别95%的车辆类型、车身颜色等信息。有些企业需要研究道路设置问题,所以只需要道路基础设施的数据。而有些企业则需要所有的数据来针对车辆上路情况做汽车行业性研究。数据标注决定了数据的准确性,特别是容易被人忽略的那5%,这就需要专业的数据注释员来完成。实现更高质量的数据标注,确保每一个数据都能帮助人工智能产品快速落地,这也是云聚数据亟待解决的焦点。
人工智能的发展离不开数据的支持。没有数据作为“燃料”,人工智能就“难以前进”。过去人工智能数据服务是一种并行模型,现在逐渐形成金字塔模型。作为金字塔之上的数据服务提供商,云聚数据要有自己的发展战略。贾宇航认为,人工智能数据服务是一个资金、人员、软硬件设施投入相对较高的行业,但也是人工智能产品落地的重要因素。
云聚数据只有专注于高还原、高精度、高质量的数据,致力于帮助企业探索开发边界,才能通过提供健康的数据,真正帮助人工智能产业平稳快速发展。
AI数据服务诸多痛点亟待解决
随着科学技术的不断更新和迭代,企业变革的方向已经从信息化转向智能化。在这个过程中,如何获取数据成为最重要的痛点。
事实上,这一问题在产业转型中早已是普遍现象。回到智能化时代初期,企业正竞相加入信息化变革的行列。此时,互联网已经积累了大量的数据信息,可以用于企业的人工智能培训。但后来人们意识到,互联网上的数据过于简单,无法满足人工智能的发展速度,于是企业开始主动获取数据。
2005年以来,以亚马逊Mturk为代表的众包模式这一新的数据采集大行其道。这种众包模式当时被硅谷的许多公司采用。它最初用于训练人工智能算法、检测虚假新闻、删除社交媒体上的暴力内容等,也用于定量研究、市场研究等领域。由于其门槛低、效率高、使用方便,一度受到广大人工智能从业者和研究人员的喜爱,也在中国掀起了一股模仿浪潮。
然而,随着人们对人工智能的依赖程度越来越高,对人工智能的需求也越来越大,数据的质量和准确性自然也越来越高,这给众包数据服务商以及人工智能数据服务行业带来了巨大的挑战和机遇。
云测数据就在此遇到了较大的困难。不得不凭借多年来在互联网行业积累的经验,不断磨砺技术能力,来重新塑造品牌形象,以期在云数据采集领域获得成长。
数据服务未来在何方
人学习的过程是触类旁通的,但人工智能的学习是靠海量数据堆积和覆盖的,这就意味着人工智能的学习和进步需要全面准确的数据。2019年被称为5G元年,5G技术高速、低延迟、低功耗,将给数据业务带来新的变化。
5G将数量和速度跟上了,数据的“质”也得到日益提升,助推数据服务行业实现巨大飞跃,从而进一步提升了人工智能的智能化水平,催生出更多的AI产品。让5G技术推动整个AI数据服务行业发展,使整个行业更加繁荣。
不过,也存在一个不可忽视的质疑,随着科技的逐步进步,对人工智能数据的需求是否会逐渐下降?答案是否定的,因为当人们享受到人工智能带来的红利时,他们的期望会增加,数据需求也不会有上限。
比如,智能手机刚问世时给人们带来了一丝新意,但人们没想到的是,几年后,智能手机、人工智能的应用场景会给我们带来如此巨大的便利,人工智能的力量从当前视野域值是看不出来的。但随着其越来越强大的过程中,其数据缺口也将越来越大。
目前,云聚数据在人工智能数据服务中遇到的各种难题,其实是行业发展的难题,透过这一小的综合体也可以影射整个数据服务行业的发展。
如何实现人工智能数据服务质量的飞跃,云聚数据还需克服过去数据服务行业的困难,使数据服务场景化、细化、质量化。通过提供定制化的数据采集、高精度的数据标注等服务模式,逐一解决遇到的种种困难。